

CANARA VIKAAS PU COLLEGE, MANGALURU

Airport Road, Gurunagara, Mangaluru - 575008

Part A

I. Answer all the multiple-choice questions:

1. A relation R in a set A is called Reflexive relation if a) $(a,a) \in R$ for all $a \in A$ c) $(a,a) \in R$ implies $(b,a) \in R$ Ans: a) b) $(a,a) \in R$ for atleast one $a \in A$ d) $(a,a) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

2. The principal value of
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
 is

a)
$$\frac{\pi}{2}$$
 b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{6}$

Ans: c)

3. Match List - I with List - II

	-
List – I	List - II
A) Domain of $\sin^{-1} x$	i) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
B) Range of	ii) [0, <i>π</i>]
$\tan^{-1} x$	
C) Range of	iii) [-1, 1]
$\cos^{-1} x$	

Choose the correct answer from the options given below. a) A -i, B - ii, C - iii b) A -iii, B - ii, C - i c) A -ii, B - i, C - iii d) A -iii, B - i, C - ii Ans: d)

4. For a 2 x 2 matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ whose elements are given by $a_{ij} = 2i - j$ then A is equal to a) $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ Ans: b)

5. Let A be a non-singular matrix of order 3×3 , then |adj A| is equal to

a)
$$|A|$$
 b) $3|A|$ c) $|A|^3$ d) $|A|^2$
Ans: d)

6. If
$$f(x) = \cos 2x$$
, then $f'\left(\frac{\pi}{4}\right)$ is
a)2 b) -2 c) $\sqrt{2}$ d) $-\sqrt{2}$
Ans: b)

1 x 15 = 15

7. For the given figure consider the following statements 1 and 2

Statement 1: Left hand derivative of y = f(x) at x = 1 is -1. Statement 2: The function y = f(x) is differentiable at x = 1. Then which of the following are true? a) Statement 1 is true, statement 2 is false b) Statement 1 is false, statement 2 is true c) Both statements 1 and 2 are true d) Both statements 1 and 2 are false **Ans: a**)

8. The absolute maximum value of the function f given by $f(x) = x^3$, $x \in [-2, 2]$ is a) 2 b) 0 c) -2 d) 8 Ans: d)

9.
$$\int e^{x} (\sin x - \cos x) dx \text{ is}$$

a) $-e^{x} \cos x$ b) $e^{x} \cos x$ c) $e^{x} \sin x$ d) $e^{x} \sin^{2} x$
Ans: a)

10. The degree of differential equation $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + e^{\frac{dy}{dx}} = 0$ is a) 1 b) 3 c) 2 d) not defined **Ans: d**)

11. The direction cosines of the vector $\vec{a} = \hat{i} - j + 2k$ are

a)
$$\frac{1}{\sqrt{5}}, \frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}$$
 b) $\frac{1}{\sqrt{6}}, \frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}$ c) $\frac{1}{6}, \frac{-1}{6}, \frac{2}{6}$ d) $\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}$
Ans: b)

12. The angle between two vectors \vec{a} and \vec{b} with $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$ is

a)
$$\frac{\pi}{6}$$
 b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$
Ans: c)

13. The equation of y-axis in space is
a) x = 0, y = 0
b) x = 0, z = 0
c) y = 0, z = 0
d) y = 0
Ans: b)

14. If
$$P(A) = \frac{1}{2}$$
, $P(B/A) = \frac{2}{3}$ then $P(A \cap B)$ is
a) $\frac{1}{3}$ b) $\frac{1}{2}$ c) 1 d) $\frac{3}{5}$
Ans: a)

15. Assertion [A]: For two events E and F if $P(E) = \frac{1}{5}$, $P(F) = \frac{1}{2}$ and $P(E|F) = \frac{1}{5}$ then E and F are independent events. Reason [R]: If E and F are two independent events then P(F|E) = P(F). Then which of the following are true? a) [A] is true but [R] is false c) Both [A] and [R] are true **Ans: c**)

II. Fill in the blanks by choosing appropriate answer from those given in the brackets:

$$[0, 2, 1, \frac{5}{9}, -1, 6]$$
1 x 5 =
16. The value of $\cos\left(\sec^{-1}(2) - \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$ is _____
Ans: 1
17. If $y = \sin^{-1}(\cos x)$ then $\frac{dy}{dx} =$ ____
Ans: -1
18. The value of $\int_{7}^{13} 1dx =$ ____
Ans: 6
19. The projection of vector $\hat{i} + j$ along the vector $\hat{i} - j$ is ____
Ans: 0

20. If
$$P(A \cap B) = \frac{4}{13}$$
 and $P(B) = \frac{9}{13}$ then $P(A'|B) =$
Ans: $\frac{5}{9}$

Part B

III. Answer any SIX of the following questions:

21. Find the equation of the line joining (1, 2) and (3, 6) using determinants.Ans: We know that Area of triangle

$$=\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

If area of triangle = 0.

Then it forms a straight line.

$$\therefore (x_1y_1) = (1,2); (x_2y_2) = (3,6); (x_3y_3) = (x,y)$$

$2 \times 6 = 12$

5

$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1 \end{vmatrix}$$
$$0 = \frac{1}{2} \{ 1(6 - y) - 2(3 - x) + 1(3y - 6x) \}$$
$$0 = \frac{1}{2} [6 - y - 6 + 2x + 3y - 6x]$$
$$0 = \frac{1}{2} [-4x + 2y]$$
$$0 = \frac{1}{2} [-4x + 2y]$$
$$0 = -\frac{1}{2} [2(-2x + y)]$$
$$0 = -2x + y$$
$$2x - y = 0 \text{ or } 2x = y$$

22. If
$$\sqrt{x} + \sqrt{y} = \sqrt{10}$$
, Show that $\frac{dy}{dx} + \sqrt{\frac{y}{x}} = 0$

$$\sqrt{x} + \sqrt{y} = \sqrt{10}$$

Differentiate both sides w.r.t to x

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0$$
$$\frac{1}{2} \left[\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} \frac{dy}{dx} \right] = 0$$
$$\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} \frac{dy}{dx} = 0$$
$$\frac{1}{\sqrt{y}} \frac{dy}{dx} = -\frac{1}{\sqrt{x}}$$
$$\frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$$
$$\therefore \frac{dy}{dx} + \sqrt{\frac{y}{x}} = 0$$

23. A balloon which is always remains spherical has a variable radius. Find the rate at which its volume is increasing with radius when the radius is 10 cms.

Ans:
$$V = \frac{4}{3}\pi r^3$$

 $\frac{dv}{dr} = \frac{4}{3}\pi (3r^2)$
 $\frac{dv}{dr}\Big|_{r=10} = \pi (4(100)) = 400\pi \ cm^3 / cm$

24. Find the intervals in which the function f is given by $f(x) = 4x^3 - 6x^2 - 72x + 30$ is decreasing.

Ans:

We have $f(x) = 4x^3 - 6x^2 - 72x + 30$ $f^1(x) = 12x^2 - 12x - 72$

$$=12(x^{2} - x - 6) = 12(x - 3)(x + 2)$$

Now f¹(x) = 0 $\Rightarrow 12(x - 3)(x + 2) = 0$
 $\Rightarrow x = 3, x = -2$

divides the real line in to three disjoint interval $(-\infty, -2), (-2, 3), (3, \infty)$

Interval	$sign \ of \ f^1(x)$	Nature of function f
(-∞,-2)	(-)(-) > 0	f is strictly increasing
(-2,3)	(-)(+) < 0	f is strictly decreasing
(3,∞)	(+)(+) > 0	f is strictly increasing

Thus **f** is strictly decreasing in (- 2, 3).

25. Find $\int \log(\sin x) \cot x dx$

Ans: $I = \int \log(\sin x) \cot x dx$ $= \int t dt$ $= \frac{t^2}{2} + C$ $= \frac{(\log(\sin x))^2}{2} + C$ Put $\log \sin x = t$ D.w.r.to x $\frac{\cos x}{\sin x} = \frac{dt}{dx}$ $\cot x dx = dt$

26. Verify that the function $y = a \sin x + b \cos x$ is a solution of differential equation $\frac{d^2 y}{dx^2} + y = 0$

Ans:
$$y = a\cos x + b\sin x$$

$$\frac{dy}{dx} = -a\sin x + b\cos x$$

$$\frac{d^2y}{dx^2} = -(a\cos x + b\sin x)$$

$$\frac{d^2y}{dx^2} = -y$$

$$\frac{d^2y}{dx^2} + y = 0$$

A

27. If $\vec{a} = \hat{i} + j + k$, $\vec{b} = 2\hat{i} - j + 3k$ and $\vec{c} = \hat{i} - 2j + k$ then find unit vector parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$. Ans: $\vec{a} = \hat{i} + j + k$, $\vec{b} = 2\hat{i} - j + 3k$, $\vec{c} = \hat{i} - 2j + k$ $\vec{r} = 2\vec{a} - \vec{b} + 3\vec{c} = 3\hat{i} - 3j + 2k$ $\hat{r} = \frac{3\hat{i} - 3j - 2k}{\sqrt{22}}$

28. If the lines $\frac{\mathbf{x} \cdot \mathbf{1}}{-3} = \frac{\mathbf{y} \cdot \mathbf{2}}{2\mathbf{k}} = \frac{\mathbf{z} \cdot \mathbf{3}}{2} & \frac{\mathbf{x} \cdot \mathbf{1}}{3\mathbf{k}} = \frac{\mathbf{y} \cdot \mathbf{1}}{1} = \frac{\mathbf{z} \cdot \mathbf{6}}{-5}$ are perpendicular find k. Ans: Given equation of the line is of the form $\frac{\mathbf{x} - \mathbf{x}_1}{a_1} = \frac{\mathbf{y} - \mathbf{y}_1}{b_1} = \frac{\mathbf{z} - \mathbf{z}_1}{c_1} & \frac{\mathbf{x} - \mathbf{x}_2}{a_2} = \frac{\mathbf{y} - \mathbf{y}_2}{b_2} = \frac{\mathbf{z} - \mathbf{z}_2}{c_2}$ Two lines are perpendicular if

 $a_1a_2 + b_1b_2 + c_1c_2 = 0$

$$(-3)(3k)+(2k)(1)+2(-5)=0$$

 $-9k + 2k - 10 = 0 \implies \frac{-10}{7} = k$

29. An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after other without replacement. What is the probability that Both drawn balls are black? Ans:

Let E and F denote respectively the events that first and second ball drawn are black. We have to find $P(E \cap F)$

Now, $P(E) = P(black ball in first draw) = \frac{10}{15}$

Therefore, the probability that the second ball drawn is black, given that the ball in the first drawn is black, is nothing but the conditional probability of F given that E has occurred

i.e,
$$P(F/E) = \frac{9}{14}$$

By multiplication rule of probability, we have

$$P(E \cap F) = P(E)P(F|E)$$
$$= \frac{10}{15} \times \frac{9}{14} = \frac{3}{7}$$
Part C

IV. Answer any SIX of the following questions:

30. Check whether the relation R in R defined by $\mathbf{R} = \{(\mathbf{a}, \mathbf{b}); \mathbf{a} \le \mathbf{b}^3\}$ is reflexive, symmetric and transitive.

Solution: (i) We have $R = \{(a,b); a \le b^3\}$

Consider
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

clearly $\frac{1}{2} \le \left(\frac{1}{2}\right)^3$ is not true
Thus $\left(\frac{1}{2}, \frac{1}{2}\right) \notin \mathbb{R}$ that is R is not reflexive
(ii) Clearly $(1, 2) \in \mathbb{R}$ but $(2, 1) \notin \mathbb{R}$
i.e, $1 \le 2^3$ but $2 \le 1^3$ is not true.
R is not symmetric.

(iii) $(10,3) \in \mathbb{R}$ $(3,2) \in \mathbb{R}$ but $(10,2) \notin \mathbb{R}$ Now, we have $10 \le (3)^3$ thus $(10,3) \in \mathbb{R}$ And $3 \le 2^3$ thus $(3,2) \in \mathbb{R}$ But $(10,2) \notin \mathbb{R}$ \therefore $10 \le 2^3$ is not true Thus R is not transitive. 3 x 6 = 18

31. Prove that
$$\tan^{-1}\left(\frac{63}{16}\right) = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right)$$

Solution

R H S =
$$\sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right)$$

= $\tan^{-1}\left(\frac{5}{12}\right) + \tan^{-1}\left(\frac{4}{3}\right)$
= $\tan^{-1}\left(\frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \cdot \frac{4}{3}}\right)$
= $\tan^{-1}\left[\frac{\frac{15 + 48}{36}}{\frac{36}{36} - 20}\right] = \tan^{-1}\left[\frac{63}{16}\right]$

32. Express $A = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$ as sum of symmetric and skew symmetric matrix. Solution:

Let
$$A = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}$$
, $A' = \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix}$
 $P = \frac{1}{2}(A + A') = \frac{1}{2}\begin{bmatrix} 2 & 4 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$
 $P' = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = P$ \therefore $P = \frac{1}{2}(A + A')$ is a symmetric matrix
 \therefore $A - A' = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix}$
 $Q = \frac{1}{2}(A - A') = \frac{1}{2}\begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$
Now $Q' = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} = -Q$
 $Q = \frac{1}{2}(A - A')$ is a skew symmetric matrix
Now $P + Q = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} = A$
33. Find $\frac{dy}{dx}$, if $x = a \begin{bmatrix} \cos t + \log tan(\frac{t}{2}) \end{bmatrix}$ and $y = a \sin t$.
Solution: $x = a \begin{bmatrix} \cos t + \log tan(\frac{t}{2}) \end{bmatrix}$

Differentiate w. r.to t

Differentiate w. r.to t

$$\frac{dx}{dt} = a \left\{ -\sin t + \frac{1}{\tan \frac{t}{2}} \times \sec^2 \frac{t}{2} \times \frac{1}{2} \right\}$$

$$= a \left\{ -\sin t + \frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2} \right\}$$
$$= a \left\{ -\sin t + \frac{1}{\sin t} \right\} = a \left\{ \frac{-\sin^2 t + 1}{\sin t} \right\} = a \frac{\cos^2 t}{\sin t}$$
$$y = a \sin t$$
Differentiate w.r.to t
$$\frac{dy}{dt} = a \cos t$$
$$\frac{dy}{dt} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a \cos t}{a \frac{\cos^2 t}{\sin t}} = \frac{\sin t}{\cos t} = tant$$

34. Find two positive numbers x & y such that x + y = 60 and xy^3 is maximum.

Solution : Let P = xy³
$$x + y = 60$$
 (given)
= $(60 - y)y^3$ ($\because y = 60 - x$)
P = $60y^3 - y^4$
Differentiate w. r. to y
 $\frac{dP}{dy} = 60 \times 3y^2 - 4y^3$
= $180y^2 - 4y^3$
 $\frac{d^2P}{dy^2} = 360y - 12y^2 = y(360 - 12y)$
For the value to be max/min $\frac{dP}{dy} = 0$
 $\frac{dP}{dy} = 0 \implies 180y^2 - 4y^3 = 0 \implies 180y^2 = 4y^3$
 $180 = 4y$
 $y = \frac{180}{4} = 45$
 $x = 60 - y = 60 - 45 = 15$
 \therefore P is maximum
when $x = 45, y = 15$ or $x = 15, y = 45$.
35. Evaluate $\int \frac{2x}{x^2 + 3x + 2} dx$
Solution: $\int \frac{2x}{x^2 + 3x + 2} dx$
 $\int \frac{2x}{(x+2)(x+1)} = \frac{A}{x+2} + \frac{B}{x+1}$
 $\implies 2x = A(x+1) + B(x+2)$
Put $x = -1$ we get $B = -2$
Put $x = -2$ we get $A = 4$

$$\int \frac{2x}{(x+2)(x+1)} dx$$

$$\therefore = \int \left(\frac{4}{x+2} - \frac{2}{x+1}\right) dx$$

$$= 4 \log |x+2| - 2 \log |x+1| + C$$

36. Find the area of the triangle ABC where position vectors of A, B and C are $\hat{i} + \hat{j} + 2\hat{k}$, $2\hat{j} + \hat{k}$ and $\hat{j} + 3\hat{k}$ respectively.

Solution : Given

$$\overrightarrow{OA} = \hat{i} - \hat{j} + 2\hat{k}, \ \overrightarrow{OB} = 2\hat{j} + \hat{k}, \ \overrightarrow{OC} = \hat{j} + 3\hat{k}$$

 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = -\hat{i} + 3\hat{j} - \hat{k}$
 $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -\hat{i} + 2\hat{j} + \hat{k}$
Area of the triangle is $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$
Now, $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 3 & -1 \\ -1 & 2 & 1 \end{vmatrix} = \hat{i}(3+2) - \hat{j}(-1-1) + \hat{k}(-2+3) = 5\hat{i} + 2\hat{j} + \hat{k}$
 $\therefore |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{25 + 4 + 1} = \sqrt{30}$
Thus the required area is $\frac{1}{2}\sqrt{30}$.

37. Derive the equation of line in space passing through a point and parallel to the vector both in vector and Cartesian form. Ans:

$$\begin{array}{c|c} z & \hline b \\ \hline A(x,y,z_i) & P(x,y,z) \\ \hline \hline a & \hline required line \\ \hline \hline v \\ 0 & Y \end{array}$$

Let \vec{a} be the position vector of the given point A with respect to the origin O. let 'l' be the line passes through the point A and is parallel to a given vector \vec{b} . Let \vec{r} be the position vectors of any point P on the line.

Then \overrightarrow{AP} is parallel to \vec{b} , We have $\overrightarrow{AP} = \lambda \vec{b}$ $\Rightarrow \overrightarrow{OP} \cdot \overrightarrow{OA} = \lambda \vec{b}$ $\Rightarrow \vec{r} \cdot \vec{a} = \lambda \vec{b}$ $\Rightarrow \vec{r} = \vec{a} + \lambda \vec{b}$

This gives the position vector of any point P on the line. Hence it is called vector equation of the line.

38. Box-I contains 2 gold coins, while another Box-II contains 1 gold coin and 1 silver coin. A person chooses a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the box is also of gold?

Solution : Let E_1 be the event of choosing Box-I

Let E₂ be the event of choosing Box-II.

Then
$$P(E_1) = P(E_2) = \frac{1}{2}$$

Also, A is the event that the coin drawn is of gold. Then P(A | E) = P (A gold coin from Box-I)

Then,
$$P(A|E_1) = P$$
 (A gold coin from B

$$=\frac{2}{2}=1$$

$$P(A|E_2) = P(A \text{ gold coin from Box-II}) = \frac{1}{2}$$

Now, the probability that the other coin in the box is of gold The probability that gold coin is drawn from the Box-I = $P(E_1 | A)$

By using Baye's Theorem,

By using baye s friction,

$$P(E_{1} | A) = \frac{P(E_{1})P(A | E_{1})}{P(E_{1})P(A | E_{1}) + P(E_{2})P(A | E_{2})}$$

$$P(E_{1} | A) = \frac{\frac{1}{2} \times 1}{\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{2}}$$

$$\Rightarrow P(E_{1} | A) = \frac{2}{3}$$

Part D

V. Answer any FOUR of the following questions:

5 x 4 = 20

39. If $A = R - \{3\}$ and $B = R - \{1\}$ and $f: A \to B$ is a function defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one -

one and onto? Justify your answer. **Solution:**

Given
$$f(x) = \left(\frac{x-2}{x-3}\right)$$

let $x_1, x_2 \in A = R - \{3\}$
 $f(x_1) = f(x_2)$
 $\Rightarrow \frac{x_1-2}{x_1-3} = \frac{x_2-2}{x_2-3}$
 $\Rightarrow (x_1-2)(x_2-3) = (x_2-2)(x_1-3)$
 $\Rightarrow x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$
 $\Rightarrow x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$
 $3x_2 - 2x_2 = 3x_1 - 2x_1$
 $\Rightarrow x_2 = x_1 \Rightarrow x_1 = x_2$
 $\therefore f$ is one-one
Let $y \in B = R - \{1\}$ and let $f(x) = y$

$$\Rightarrow \frac{x-2}{x-3} = y$$

$$\Rightarrow x-2 = xy-3y \Rightarrow x-xy = 2-3y$$

$$\Rightarrow (1-y) = 2-3y \Rightarrow x = \frac{2-3y}{1-y} \in A$$

: corresponding to each $y \in B$ there exists $\left(\frac{2-3y}{1-y}\right) \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\frac{2-3y}{1-y}-2}{\frac{2-3y}{1-y}-3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y$$

 $\therefore f$ is onto

Hence, f is one-one and onto.

Hence it is a bijective function.

40. For the matrices A and B, verify that (AB)' = B'A' where $A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$

Solution: A.B =
$$\begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$$

$$\therefore \quad (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} - \dots - (1)$$

$$B' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, A' = \begin{bmatrix} 1 & -4 & 3 \end{bmatrix}$$

$$B'A' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} - \dots - (2)$$
From (1) and (2) (AB)' = B'A'.

41. Solve the following system of linear equations by matrix method

4x + 3y + 2z = 60, 2x + 4y + 6z = 90, 6x + 2y + 3z = 70.

Solution :

This system can be written as AX = B, where

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{vmatrix} = 4(12 - 12) - 3(6 - 36) + 2(4 - 24) = 90 - 40 = 50 \neq 0$$

 \therefore Hence, A is nonsingular and so its inverse exists.

To find co-factor

$$A_{11} = 0, \quad A_{12} = 30 \quad A_{13} = -20$$

$$A_{21} = -5, \quad A_{22} = 0 \quad A_{23} = 10$$

$$A_{31} = 10 \quad , A_{32} = -20 \quad A_{33} = 10$$
Co-factor matrix $A = \begin{bmatrix} 0 & 30 & -20 \\ -5 & 0 & 10 \\ 10 & -20 & 10 \end{bmatrix}$

$$\therefore \quad Adj A = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

$$\therefore \quad A^{-1} = \frac{1}{|A|} (Adj A) = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$
As , $AX = B \implies X = A^{-1}B$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix} \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix} \begin{bmatrix} 60 \\ 97 \\ 180 + 0 - 140 \\ -120 + 90 + 70 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 25 \\ 40 \\ 40 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 8 \end{bmatrix}$$

$$x = 5, y = 8 \text{ and } z = 8$$

42. If $y = (\tan^{-1}x)^2$ then show that $(x^2 + 1)^2 \frac{d^2y}{dx^2} + 2x(x^2 + 1)\frac{dy}{dx} = 2$.

Soln: $y = (tan^{-1}x)^2$

Differentiate.w.r.t.x

$$\frac{dy}{dx} = 2(\tan^{-1}x) \times \frac{1}{1+x^2}$$

By cross multplying

$$(1+x^2)\frac{dy}{dx} = 2(\tan^{-1}x)$$

Again Diff.w.r.t. x on both sides

$$(1+x^2)\frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot 2x = \frac{2}{1+x^2}$$

multiply $(1 + x^2)$ on bothsides

$$(1+x^{2})^{2}\frac{d^{2}y}{dx^{2}} + 2x(1+x^{2})\frac{dy}{dx} = 2$$

43. Find the integral value of $\int \frac{dx}{a^2 + x^2}$ and hence evaluate $\int \frac{1}{x^2 - 6x + 13} dx$

Solution: Let $I = \int \frac{dx}{a^2 + x^2}$ $= \int \frac{a \sec^2 \theta \ d\theta}{a^2 + a^2 \tan^2 \theta}$ $= \int \frac{a \sec^2 \theta \ d\theta}{a^2 (1 + \tan^2 \theta)}$ $= \frac{1}{a} \int d\theta$ $= \frac{1}{a} \tan^{-1} \frac{x}{a} + c$ We have $x^2 - 6x + 13 = (x - 3)^2 + 2^2$ So $\int \frac{1}{x^2 - 6x + 13} dx = \int \frac{1}{(x - 3)^2 + 2^2} dx = \frac{1}{2} \tan^{-1} \left(\frac{x - 3}{2}\right) + c$

44. Find the area of circle $x^2 + y^2 = a^2$ by method of integration Soln:

Area of circle=4{area of the region of AOBA} Area of AOBA = $\int_0^a y \, dx$ Now, $x^2 + y^2 \Rightarrow y^2 = a^2 - x^2$ Area of AOBA = $\int_0^a \sqrt{a^2 - x^2} \, dx$ $= \left[\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_0^a$ $= \left[\left(\frac{a}{2} \times 0 + \frac{a^2}{2}\sin^{-1}1\right) - 0\right] = \frac{\pi a^2}{4}$ squre units. Area of circle = $4\frac{\pi a^2}{4} = \pi a^2$ square units 45. Solve the differential equation $\cos^2 x \cdot \frac{dy}{dx} + y = \tan \left(0 \le x < \frac{\pi}{2}\right)$

Soln: We have
$$\cos^2 x \cdot \frac{dy}{dx} + y = \tan \left(0 \le x < \frac{\pi}{2} \right)$$

divided by $\cos^2 x$ we get

$$\frac{dy}{dx} + y \cdot \sec^{2} x = \tan x \cdot \sec^{2} x$$

compare with $\frac{dy}{dx} + py = Q$

$$p = \sec^{2} x \qquad Q = \tan x \cdot \sec^{2} x$$

$$I.F = e^{\int p \cdot dx} = e^{\int \sec^{2} x \cdot dx} = e^{\tan x}$$

 \therefore solution of differential equation is

$$y(I.F) = \int Q(I.F) \cdot dx + c$$

$$y.e^{\tan x} = \int \tan x \cdot \sec^{2} x \cdot e^{\tan x} \cdot dx + c$$

$$y.e^{\tan x} = I + C - - - - (1)$$

when $I = \int e^{\tan x} \cdot \tan x \cdot \sec^{2} x \cdot dx$
put $\tan x = t \implies \sec^{2} x \cdot dx = dt$

$$I = \int e^{t} \cdot t \cdot dt$$

$$I = t \cdot e^{t} - \int e^{t} \cdot dt$$

$$I = t \cdot e^{t} - e^{t}$$

$$I = \tan x \cdot e^{\tan x} - e^{\tan x} - \cdots - (2)$$

substitute (2) in (1)

$$y.e^{\tan x} = \tan x \cdot e^{\tan x} - e^{\tan x} + c$$

$$y = \tan x - 1 + c \cdot e^{-\tan x}$$

Part E

VI. Answer the following question:

6 + 4 = 10

46. Prove that $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ hence evaluate $\int_0^{\frac{\pi}{4}} \log(1 + \tan x) dx$. Soln : Consider $\int_0^a f(a - x) dx$

When
$$x = a$$
, $t = 0$,
and $x = 0$, $t = a$
$$= -\int_{a}^{0} f(t)(dt) = \int_{0}^{a} f(t)dt$$
$$\begin{bmatrix} \because \int_{0}^{a} f(x dx) = -\int_{a}^{0} f(x)dx \end{bmatrix}$$
$$\int_{0}^{a} f(t)dx = \int_{0}^{a} f(x)dx$$
$$\therefore \int_{0}^{a} f(x)dx = \int_{0}^{a} f(a - x)dx$$
Let $I = \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x)dx$.

$$I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \tan\left(\frac{\pi}{4} - x\right)\right) dx$$

$$I = \int_{0}^{\frac{\pi}{4}} \log\left(1 + \frac{\tan\frac{\pi}{4} - \tan x}{1 + \tan\frac{\pi}{4}\tan x}\right) dx$$

$$I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{1 + \tan x + 1 - \tan x}{1 + \tan x}\right) dx$$

$$I = \int_{0}^{\frac{\pi}{4}} \log\left(\frac{2}{1 + \tan x}\right) dx$$

$$I = \int_{0}^{\frac{\pi}{4}} \log 2 - \int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$$

$$I = \log 2 \int_{0}^{\frac{\pi}{4}} 1 dx - I$$

$$2I = \log 2 \left[x\right]_{0}^{\frac{\pi}{4}}$$

$$I = \frac{\pi}{8} \log 2$$

OR

2. Minimize and maximize Z = 5x + 10ySubject to the constraints $x + 2y \le 120$ $x + y \ge 60$ $x - 2y \ge 0$ $x \ge 0$; $y \ge 0$

Soln: We have to minimize and maximize	Z = 5x + 10y
Now, changing the given in equation	x + 2y ≤120(1)
	x + y ≥ 60(2)
	x−2y≥0(3)
	$x \ge 0$; $y \ge 0$ (4)

To equation.

(6)

The shaded region in the above figure is a feasible region determined by the system of constraints equation (1) to equation (4). It is observed that the feasible region is bounded. The co-ordinate of the corner point BDEC are, (120, 0)., (60, 30) (40, 20) (60, 0). The optimum value of Z are

Corner point	Z = 5x +10y
(120 , 0)	Z = 600 Maximum
(60 , 30)	Z = 600 Maximum
(40 , 20)	Z = 400
(60 , 0)	Z = 300 Minimum

 $Z_{_{max}}$ = 600 at the points (60 , 30) , (120 , 0)

 $Z_{\rm min}$ = 300 at the point (60 , 0)

Every point on line segment BD joining the two corner points B and D also gives same maximum value .

47. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I = O$ and hence find A^{-1} (4)

Solution

$$A^{2} = AA = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$
$$A^{2} - 5A + 7I = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

$$A^{2} - 5A + 7I = O$$

Pre multiplied with A^{-1}
 $A^{-1} \cdot A^{2} - 5A^{-1}A + 7A^{-1} = O$
 $A^{-1}AA - 5(A^{-1}A) + 7A^{-1} = O$
 $(A^{-1}A)A - 5(A^{-1}A) + 7(A^{-1}) = O$
 $IA - 5I + 7A^{-1} = O$
 $A - 5I + 7A^{-1} = O$
 $7A^{-1} = 5I - A$
 $A^{-1} = \frac{1}{7}(5I - A)$

$$A^{-1} = \frac{1}{7} \left(5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \right) = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

Thus, $A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$

OR

Find the value of k, if $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$

Soln: The function is continuous at $x = \frac{\pi}{2}$.

 $\lim_{x\to\frac{\pi}{2}}f(x)=f\left(\frac{\pi}{2}\right)$...

$$\Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{k\cos x}{\pi - 2x} = 3 \Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{k\sin\left(\frac{\pi}{2} - x\right)}{2\left(\frac{\pi}{2} - x\right)} = 3$$

as $x \to \frac{\pi}{2}$, $\left(\frac{\pi}{2} - x\right) \to 0$
$$\Rightarrow \frac{k}{2} \lim_{\left(\frac{\pi}{2} - x\right) \to 0} \frac{\sin\left(\frac{\pi}{2} - x\right)}{\left(\frac{\pi}{2} - x\right)} = 3$$

$$\Rightarrow \frac{k}{2} \times 1 = 3$$

$$\therefore K = 3 \times 2 = 6$$
